
TECHNICAL NOTE 3950

CHARTS FOR THE ANALYSIS OF FLOW IN A WHIRLING DUCT

By Robert A. Makofski

Langley Aeronautical Laboratory
Langley Field, Va.

Washiqkon

May 1957



.

Illlllll!lll[llll!llllllullll
NM30NAL ADVISORY COMMITTEE FOR AERONAL auh71J3

‘I!K!HNICALNOTE 3950

CHARTS FOR TEE ANALYSIS OF FLOW IN A WHIRLING DUCT

By Robert A. Makofski

n

SUMMARY

Charts are developed for the analysis of flow in a whirling constant-
diameter duct. These charts permit the determination of the duct-exit
Mach number, or the Mach number at any point along the duct, for practical
ranges of duct-inlet Mach number, duct-tip Mach number, friction factor,
ratio of ambient temperature to duct-flow total temperature, ratio of
duct-tip radius to duct hydraulic diameter, and heat conductivity through
the duct wall and surrounding mxterial. The method of using the charts
is illustrated through the computation of a sample problem.

INTRODUCTION

In certain types of rotor tip-mounted propulsive
in helicopters, for example, the pressure-jet system,
ducted through the rotor blade. In order to obtain a

systems being used
the air supply is
complete analysis

of such a system, a kaowledge of the flow properties in tfieduct is-
required. The usual method of analysis requires a t~-consuming mnner-
ical integration of a nonlinear differential equation sMlar to those
derived in references 1 and 2. The purpose of this paper is to perform
this integration and to present the results in chart form for a range of
parameters which include the duct-wet Mach nuniber,the duct-tip Mach
number, the duct-inlet temperature, the heat-transfer rate, the friction
factor, snd the ratio of the duct hydraulic diameter to the duct-tip
radius. The charts are presented for a constant-dismeter duct; however,
possible applications of these charts for ducts of varying diameter are
discussed.

The analysis presented herein is limited to steady-state, one-
dimensional, compressible, viscous flow and applies only to straight
ducting.

.
A

SYMBOLS

duct cross-sectionalsrea, sq ft

speed of sound, fps
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specific heat at constant pressure, ft-lb/slug-% R

duct hydraulic diameter,
4Afi

Perimeter’ *

local heat-transfer coefficient based on difference between wall
temperature and adiabatic wall temperature, ft-lb/ft2-sec-OR n

/
friction factor, T * pu2

thermal conductivity, ft-lb/ft-sec-%

duct l.kchnumber

duct-tip Mach number, QJ?e/aa

heat added to fluid element per umit mass per unit surface
area, Tt-lb/ft2-shg

ft-lb
heat transferred ~rom fluid element per second, ~

thermal resistance between duct wdl and outer wall of blade
per running foot of blade, sec-%/ft-lb

radial distance from center of rotation to

radial distsmce from center of rotation to
considered, ft

fluid element, f%

exit of duct being

surface sxea through which heat is transferred per running
foot, Sq f%

static temperature, ‘R

total temperature, ‘R

duct-flow velocity, fps

ratio of fluid-element radius to duct-tip radius, r/re

ratio of specific heats

ratio of duct heat-transfer coefficient to overall heat-
transfer coefficient (defined ineq. (5b))

maBs’density, Sl~S/CU ft

.

b
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T friction shearing stress, lb/sq ft

# Mach number function defined in equation (8b)

Q rotor angular

Subscripts:

a ambient air

velocity, radism3/sec

aw adiabatic w&U

e duct-exit station

i duct-inlet station

o center line of rotation station

Ow outer wall, that is, waJL ~osed

w duct W~

ANALYSIS

to euibientair

b order to develop an expression for the steady, one-d-nsional,
compressible, viscous flow in a whirling duct, it is necessary to snalyze
all the forces end energies acting on a fluid element. An analysis of
this type using the momentum and continui~ equations yields a relation,
as given in reference 1, between the duct Mach nurciberand the independent
flow variables. T’!hisrelation may be written in the form

( )-1M22
2M*1++

a Ta
%%

1- ~2
X+

which gives the effect of duct area,
on the duct Mach number. A solution

1-M? D

M2(1+ yM2)(l+~M2) ‘Tt/Tt ~1~

1-IF &c

friction, whirling, and temperature
to equation (1) is-ilossiblefor

known values of the independent variables._ However; the-total-temperature
vsriation along the duct iS dependent Upn ~ ~d ~e/D~ ~d it is>

therefore, necessary to analyze the energies involved in the flow system.



4

The Energy Equation
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For a steady-flow process,the ener~ equation is a balance of alIL
the energies involved in a system. Therefore, for a fluid element in a
duct subjected to a centrifugal force in the flow direction, the energy
equation for constant specific heat is

The heat transferred from the duct may be expressed as

(2)

The adiabatic wall temperature Taw is assumed to be equal to the total

temperature; that 1s, the recovery factor is assumed to be equal to one.
The erroti”involvedin such an assumption is very small at low duct Mach
numbers.

Substituting the preceding expression for the third term of eqw-
tion (2), nondimensionalizing,and using the relation aa2 = (T - l)cpTa

reduces eqmtion (2) to

dTt/Tt
—=(7
,dx

Equation (3) may be further
states that

- 1): Iv&x +

simplified by

r-

●-

.

. .

.

()hh ‘e Tw ~—— —-
C.&U D Tt

(3)

use of Reynolds analogy which

h Kf—= —
Cppu 2

This relation is fa@ly accurate at subsonic Mach numbeis (refs. 3 and k).
Equation (3) mRy then be expressed as

wpt ,i ()=(7-1)~l@x+2#~~-1
dx Tt,i t,i D Tt

(4a)
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* For adiabatic flow in the duct Tw = Tt , the total temperature is

g5ven by

Tt
—= l+y% X2
‘tji Ttji W(

If the flow is not adiabatic, the ratio of
temperature must be determined as a function of

- xi )2 (&b)

wall temperature to total
x.

Ratio of wall temperature to total temperature.- An analysis of the
heat transfer from the duct to the ambient air results in a relation
between the temperatures of the duct flow, the duct wall, and the ambient
air. This relation may be expressed as

where ~
wall) to
air) and

*

.

Equation
rotor ta

The
transfer

is the ratio of the duct
the overall heat-transfer
is given by

heat-transfer coefficient
coefficient (from the gas

-1
L

h%
-=1+
K

—+M&
haSow

(%)

(gas to duct
to the ambient

(!%)

(>) assumes the
be negligible.

aerodynamic heating of the external skin of the

ratio of the duct heat-transfer coefficient to the overall heat-
coefficient is determined by the heat-transfer coefficient of the

gas in the duct, the heat-transfer coefficient betw&en the ambient air and
external skin of the rotor, and the internal constmction of the rotor
blade. It varies from zero for adiabatic flow to about 0.5 for thin-
walled ducts in the leading edge of a rotor blade.

The main difficulty in determining a value OY R for a duct in a
helicopter rotor blade would be in estimating the thermal resistance
between the inner surface of the duct and the outer surface of the rotor
blade. However, the effect of heat transfer on the change in Mach nun-her
in the duct is small compared
It is possible, therefore, to

. resistance to compute ~ and
number variation in the duct.

*

with the effect of whirl~ and friction.
use an approximate value of the thermal
the effects of heat transfer on the Mach
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Tbtal-temperaturevariation in duct.- The variation of total tem-
perature in the duct may be obtained by substitution of equation (~)
into equation (ka) which gives

For a
the form

constant-diameterduct, the solution to equation (6) is of

1)~%L@%.i=e-2*(x4 (7-
-2-Kfre

‘t K ~ (X-xf)

q
+

“2’=

()

-l-I-
2F %re

T

[

-2-l%re II [(X-Xi )
-2+’%’re

Kfre +Tal-e
1

--#x-xi)
p~-x-+e D

%,i
(7a)

where E is a mean value of IC for the duct.
/

The term K+re D is con-

stant for a constant-diameterduct except for the small effect of the
temperature variation along the duct on q.

Equation (Ya) may be simplified for low rates of heat transfer by
expanding the exponential terms and keeping only the first two terms of
the expansion. The resulting equation is

Tt—=l+%+%2(x2-xi2)+2
‘t,i

%(& -y’ -‘i) ‘n’t,i ~
K%re

For values of — = 0.007, the value of

()

Tt
— - 1 computed by equa-

D Tt,i

tion (7b) is within 4 percent of the value computed by equation (7a).

The absolute value of TtlTt,i is welJ within 1 percent of ths value

computed by eq=tio.n (Ya).
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With the lmowledge of the total-temperaturevariation along the duct
as given
equation

The
dimter
tion (1)

by equations-(6) and (7a), it i= now possible to write-a general
describing the flow in a whirling duct.

The General Flow Equation ._

general equation describing the flow in a whirling constant-
duct may be obtained by substituting equation (6) into equa-
and simplifying. ThUS,

dM2 (
~21+7-lM2

2 )

[

4~2 ‘f~ (7+l)@*&x-—=
dx 1- ~2 >

(&)

Equation (8a) is subject to the same assumptions as equations (1) and (6):
nsmely, constant specific heat and molecular weight, the validity of the
Reynolds analogy, and the equality of the adiabatic wall temperature and
duct total temperature.

The Mach number at any point in the duct or at the duct exit is
dependent u~n five parameters: %> MT> Kfre D,/ TalTt,i~ and R.

Accordingly, any attempt to present in chart form the results of inte-
grating equation (8a) would involve a large number of calculations and
plots ●

A change of variable, however, permits results to be obtained in
terms of only four parameters with satisfactory accuracy. Equation (&)
is first rewritten as follows:

1 (1 - M2)dM2 d~

(
Kfre/DR I + ~M2

)

= Kfre/D
2

=

[

4yM2 -(7+1) ‘2 *wx -
Kfre/D Tt,i ‘t

(+++2(1 + @)E 1 (a)
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# = lo&
M2

(

- ~ z (7+1)/(7-1)
~+7 ~

2 )

$— is the new variable, and MT2
Kfre/D

— is a new parameter. A plot
~relD

of @ as a fumction of Mach number is-given in figure 1 for y . l.kO.

The left side of equation (8b) is an exact differential so that its
integral is not dependent upon the precise variation of M2 along the
duct. On the right side, the second (centri~l) term is normally of
the order of 5 to 10 times as much as the first or third terms (friction
and heat transfer, respectively). Furthermore, the first and third terms
have opposite signs and, therefore, tend to cancel. Accordingly, the
variation of M2 along the duct (whichaffects only the first and third

terms on

case, is

The

d$
the right side) does not greatly affect —

%re~D
which, in this

nearly proportional to w-

-“

preceding paragraph dealt with large values of %2.W. It is

of interest to consider the o~osite extreme - that of zero rotational
speed. Ih this case the second term disappears and only the first and
third terms remain. At reasonable values of KfrelD, there is little
variation of M2 along the duct for this case of zero rotational speed

d@
—

so that the integral of — between the duct inlet and the position
%re/D

being considered is relatively small.

The essential conclusion from the preceding discussion is that it
should be possible to choose some typical values of K@?e/D, to integrate

$0- @e
equation (8b) numerically to get - as a function of the four

within practical accuracy for any other

Of course, for large values of KfrelD

reasoning is invalid.

and to obtain results that are

value of KfrelD Witmn r@ason.

and high duct Mach numbers, this
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m Calculation of Whirling Hfect at IOw

Duct Mach Numbers

. As may be seen from figure 1, @ varies rapidly with Mach number
at low duct Mach numbers. A small error in the calculation of the duct-
inlet and duct-exit Mach numbers can cause a significant error in the .

●

difference between @o amd @e. Therefore, the charts presented in

this paper me not extended below a duct Mach nuaiberof 0.15. For duct
Mach numbers below this value, it is suggested that the effects of fric-
tion and whirling be computed separately and added. The Mach nuder
variation may then be written

Me2- (~i2 . ~k2 - Mi2)~+ + (Me2 - Mi2)% (9)

The first term on the right side of equation (9) represents the change
in Mach number of a nonwhirling duct. This value may be computed from
equation (8b) wi~h ~ = O or by-the method given in reference 5. The

second term on the right side represents the chsnge in Mach number due
to whirling s.mdmay be computedby integrating the rotation term of
equation (8b). That is,

*

.
(lo)

Since the effect of ~ is very small at the low Mach nunibers,
equation (kb) may be used to express %,i/%” Equation (10) then

becomes

[

(#f - tie)%=* loge 1 + ~

The decrease in Mach number due to whirling
equation (n) and figure 1.

may be computed by use of

good
● with

.

Calculations of the duct-exit Mach number by this procedure show
agreement with data obtained by integration of equation (&b) and
experimental data.
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CHARTS FOR ANALYZING THE FIllW

IN A WHIRIZNG IXJCT

The chsrts for analyzing the flow in a whirling constant-diameter
duct we presented in figures 2 and 3. The curves were computed by
numerically integrating equation (8b) from xi = O to x = 1.0 for

%re/D = 0.06/. tieck

also calculated. The

Ta
values of E, —

%, o’

In figure 2,

are plotted for a

the

points for values of ~re/D other thsn 0.06 were

@o- L
values of were determined for the varicrus

K&p

Q, and %2 assumed.
%re/D

positive values of go - @e as a function of ~
%re/D

Ta
range of values of ~ .fromO.95 to 0.55, E from

%, o

0 to 0.5, and
%2 from O.67 to 16.67.

%relD
In figure 3, the negative

.

.

b

values of % - @e as a function of ~ are plotted for a similar range _

%re/D
.

of variables. This method of plotting has been used to avoid the diffi-
culty of attempting to plot an ~ = 1 curve on a figure having ~ as

an abscissa. Im such a plot,

~re ID. As plotted in figure

~re/D.

In order to use figure 3

find, by trial, the value of

the ~ = 1 curve would be a function of

3, the Me = 1 curve is independent of

with only ~ known, it is necesssry to

~ that agrees with the known value of ~.

A linear interpolation

accuracy in the use of

between given values-of MTZ

%relD
is of sufficient

the chsrts.

Effect of ~re~D

As mentioned previously, the curves of figures 2 and 3 have been
computed for ~re/D = 0.06. As a check on the e~fect of K@e/D,

.

.
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calculations have been made for values of ~re/D of 0.02, 0.10, ().24,
and 0.3. These check points are shown in fi~es 2 and 3. At

Ve/D = 0.10, the difference in exit Mach number between a calculated

●

curve and the check point at the ssme %2— never exceeded 0.01 for
%re/D

. any of the check points calculated. This discrepancy is well within the
accuracy of the calculations. It appears, therefore, as though the
charts of figures 2 and 3 are substantially independent of ~re/D. AS

Ta
further evidence of this independence, calculations at — = 0.65,

%2
%,o “

~= 0.24, F=o.3, —= 2.9, and Kfre/D
%?relD

= 0.5 give a value of

flo- tie
= 2.62 which agrees with the value obtained from figure 2(d) by

Kfre~D

interpolation.

Effect of Duct-Diemeter Variation

The charts may be used to compute the Mach number variation of a
flow passsge composed of a number of ducts having different diameters.
In this case, the value of re is the dist-ce from the center of

rotation to the exit of the duct being considered and ~ is based on

the dismeter of this duct. An application of the charts to this type
of duct is given in the ssmple calculation.

The preceding method canbe applied to a tapering duct. However,
if the duct tapers rapidly, the increments of duct length that must be
used may approach the increments that would be used in integrating
equation (&). In this case, there may be little or no saving in calcu-
lation ixhnebetween the two methods.

Sample Calculation

The application of the charts may best be illustrated by a sample
calculation. Assme a duct consisting of two lengths of constant-
dismeter ducting. The first length extends from the 15-percent to the
‘j’O-percentspanwise station and has a value of K~re/D = 0.10. The
second length extends from the TO-percent to the 1~-percent spanwise
station and has a value of ~re/D = 0.12. Assume that the ratio of

the duct area of the second length to that of the first is 0.81. The
duct-tip Mach number is assumed to be 0.9 and the duct flow is assumed
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to be adiabatic (E = O). Finally, assume that, at x = 0.15, the duct
Mach m.uiberis O.kO and the ratio of sxhient temperature to total tem-—
perature is 0.65.

%,oThen, from equation (kb), = 0.997 or
Tt,i

x= 0.15,

()%2 = ~o.15)(o.9]*(o.7)

%re/D 0.15
(0.10)(0.15)

order to calculate

= Mi = 0.40. ‘Then,

= 0.850

~ for the first length of duct, assume that

from figures 2(d) ~d ~(d),

flo-tie=_025
Kfre/D “

and, by use of figure 1,

~ = 0.395”
s

For the first length of duct, the Mach gymber at x = 0.70 may be
determined from figure 2(d) at

.

()%2 = Kzx2m .5.97
%?re/D 0.70 0.10

Then,

= 2.45

and

Q = 0.345” “-

In the second length at x = 0.70, the Mach number is 0.455 if a
2-percent total-pressure loss is assumed at$_he contraction. In order .—

— . -.,.

“
.



NACATN 3950 13

to calculate ~ for the second duct, assume that the Mach number at the
inlet to the second duct is an exit Mach number; that is, % = Mi = 0.455,
Thus,

()%2 [(0.7)(0.9)12

~rdD 0.70 = (o.1.2)(o.7)
= 4.73

and

Ta

Tt,o
= 0.65

Using figure 2(d) and assuming values of ~ until the correct value
of Me is obtained yields ~ = 0.51.

Then, at x = 1.0,

()%2 = ~ = 6.75
%’reID i“

IWomfigure 2(d~,

end

Me = 0.38

Since the mass flow and total temperature at the duct exit are .lmmwn,
any other flow property may be obtained.

CONCLUDING RIMARKS

C!hsrtshave been developed for the analysis of flow in a whirling
constant-diameter duct. These charts were presented for a range of
variables which include the duct-inlet Mach number, duct-tip Mach n@er,
friction factor, ratio of mibient temperature to duct-flow total temper-
ature, ratio of duct-tip radius to duct hydreulic diezneter,ad a
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dimensionless heat-trsnsfer term. The method of using the charts is
illustrated through the computation of a sample problem.

Langley Aeronautical Laboratory,
National Advisory Committee for Aeronautics,

Iangley FieId, Vs., Januery3, 1957.
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Figure 2.- Charts for estimating change in Mach number in constant-dlmneter
duct as a function of duct Mach numb”erat center of rotation.
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Figure 2.- Continued.
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Figure 2.- Conc>uded.
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Figure 3.- Charts for estimating the change in Mach number in a constant-.
dismeter duct as a function of duct-exit Mach number.
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